
26-04-10 Solution
Functional Analysis - M.Math. I Year - Semester II

1. Let c0 = {{αn}n≥1 : αn → 0}, equipped with the supremum norm. Let f : c0 → C
be a linear function such that f(en) = n. Show that ker(f) is dense in c0.

Solution: Given that f : c0 → C is a linear function such that f(en) = n where
en denotes the sequence whose n-th term is 1 and all other terms are zero. We
claim that in order to prove that Ker(f) is dense in c0 it suffices to see that f is
discontinuous. For, if f is discontinuous, then f is not bounded and hence, for each
n = 1, 2, · · · , there exists xn ∈ c0 such that ‖xn‖ ≤ 1 and |f(xn)| > n. Thus if

x is an element of c0 lying outside ker(f), then (yn) where yn = x − f(x)
f(xn)

xn, is a

sequence in ker(f) and ‖x − yn‖ = |f(x)|
|f(xn)|‖xn‖ <

|f(x)|
n
→ 0 as n → ∞, showing

that ker(f) is dense in c0. Thus we just need to show that f is discontinuous. For
each n, consider the sequence xn = (1, 1

2
, 1
3
, 1
4
, · · · 1

n
, 0, 0, 0, · · · ), then clearly xn → 0,

‖xn‖ = 1 and |f(xn)| = n so that f is not continuous. �

2. Let H be a complex Hilbert space and let Φ : H → H be a linear onto map such
that ||Φ(x)|| = ||x|| for all x ∈ H. Show that Φ preserves the inner product.

Solution: Using the polarisation identity we observe that

4 < Φ(x),Φ(y) >=
3∑

k=0

‖Φ(x+ iky)‖2

which by the given condition equals
∑3

k=0‖x + iky‖2 which by another application
of the polarisation identity equals 4 < x, y >. Hence Φ preserves inner product. �

3. Let A be a commutative complex Banach algebra with identity e. Show that A is
homomorphic and isometric to a subalgebra of the space of bounded linear operators
on a Banach space.

Solution: Let B(A) denote the Banach algebra of bounded linear operators on A.
Define λ : A → B(A) by λa(b) = ab for a, b ∈ A (the notation λa stands for λ(a)).
Clearly λ is unital algebra homomorphism. Now, ‖λa(b)‖ = ‖ab‖ ≤ ‖a‖‖b‖ so that
‖λa‖ ≤ ‖a‖. Also we have

‖λa‖ = sup
‖b‖≤1
‖ab‖ ≥ ‖a‖.

Thus ‖λa‖ = ‖a‖ for all a in A and consequently, A is homomorphic and isometric
to the subalgebra λ(A) of B(A). �
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4. Let M = {f ∈ C([0, 1]) : f(E) = 0}, for some closed set E ⊂ [0, 1]. Show that the
quotient algebra C([0, 1])/M is homomorphic and isometric to C(E).

Solution: Consider the map from C([0, 1])→ C(E) given by f → f |E(restriction
of f to E). Clearly this a unital ∗-homomorphism between C∗-algebras which, by
virtue of the Tietze extension theorem, is surjective also. Kernel of this map is
obviously M which is closed also so that the quotient C([0, 1])/M is a C∗-algebra
and the map C([0, 1])/M → C(E) given by f + M → f |E is unital ∗-isomorphism
and thus is an isometry.

�

5. Consider the Hilbert space `2 = {{αn}n≥1 :
∑
|α2

n| < ∞}. Let T : `2 → `2 be

defined by T ({αn}n≥1) = { 1
n
αn}n≥1. Compute ||T ||, also describe T ∗.

Solution: We claim that T ∗ = T . To see this, given {αn}, {βn} ∈ `2, we note

< T{αn}, {βn} >=
∞∑
n=1

αn

n
β̄n =< {αn}, T{βn} > .

Now, ‖T{αn}‖ ≤ ‖{αn}‖ so that ‖T‖ ≤ 1. Now the sequence e1 (whose first element
is 1 and all other elements are 0) clearly has norm 1 and T (e1) = e1 showing that
‖T‖ = 1. �

6. Let A be a commutative Banach algebra with identity e. Show that every proper
ideal is contained in a maximal ideal.

Solution: Let A be a commutative Banach algebra with identity e. Let I be
a proper ideal in A. Let X be the collection of all proper ideals of A containg I
partially ordered by inclusion. Note X is non-empty since I is in X. Let C be a
chain in X. Let I ′ = ∪I∈CI. One can easily see that I ′ is an ideal of A and that
it is a proper ideal so that I ′ is an upper bound of C. Then by Zorn’s Lemma X
possesses a maximal element, as desired. �

7. Let X be a normed linear space and Y a Banach space. Show that the space of
bounded linear operators L(X, Y ) is a Banach space.

Solution: See Rudin Functional Analysis Book, Chapter 4, Theorem 4.1.

8. Let T : L1([0, 1])→ L2([0, 1]) be a bounded linear map. Consider T ∗ : L2([0, 1])→
L∞([0, 1]) defined by T ∗(f)(g) =

∫
T (g)f̄dx for f ∈ L2([0, 1]) and g ∈ L1([0, 1].

Show that T ∗ is a well-defined, bounded linear map.
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Solution: Using the fact that L1([0, 1])∗ = L∞([0, 1]) we note that for any g ∈
L1([0, 1]), f ∈ L2([0, 1]), T (g)f̄ ∈ L1([0, 1]) and so,

∫
T (g)f̄dx is a complex number.

It is clear that T ∗ is linear. Now for any f ∈ L2([0, 1]),

|T ∗(f)(g)| = |
∫
T (g)f̄dx| ≤

∫
|T (g)f̄ |dx = ‖T (g)f̄‖1 ≤ ‖T (g)‖2‖f‖2 ≤ ‖T‖‖g‖1‖f‖2

so that T ∗ is bounded.

�

9. Let H be a complex Hilbert space. Show that for some infinite discrete set Γ, there
is a bounded linear map from H onto `2(Γ).

Solution: Let {ei : i ∈ I} be an orthonormal set in H. We know from Bessel’s
inequality that for any x in H,∑

i∈I

| < x, ei > |2 ≤ ‖x‖2 (1)

Let us consider the Hilbert space `2(I) consisting of all complex functions f on I
such that

∑
i |f(i)|2 <∞ with the inner product given by

< f, g >=
∑
i

f(i) ¯g(i)

for f, g in `2(I). Define a mapping T from H to `2(I) given by x ∈ H → x′ where
x′(i) =< x, ei >. T is obviously linear. It follows from (1) that T is bounded also.
Let P be the space of all finite linear combinations of the vectors ei. Note also that
T is an isometry of P onto the dense subspace of `2(I) consisting of those functions
whose support is a finite subset of I. This implies that T is onto.

�

10. Let H be a complex Hilbert space and let T : H → H be a bounded linear map
such that its adjoint T ∗ = 0. Show that T = 0.

Solution: Note that for any x, y ∈ H,< Tx, y >=< x, T ∗y >= 0 which implies
that T = 0. �
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