1. Let $c_0 = \{\{\alpha_n\}_{n \ge 1} : \alpha_n \to 0\}$, equipped with the supremum norm. Let $f : c_0 \to \mathbb{C}$ be a linear function such that $f(e_n) = n$. Show that ker(f) is dense in c_0 .

Solution: Given that $f: c_0 \to \mathbb{C}$ is a linear function such that $f(e_n) = n$ where e_n denotes the sequence whose *n*-th term is 1 and all other terms are zero. We claim that in order to prove that Ker(f) is dense in c_0 it suffices to see that f is discontinuous. For, if f is discontinuous, then f is not bounded and hence, for each $n = 1, 2, \cdots$, there exists $x_n \in c_0$ such that $||x_n|| \leq 1$ and $|f(x_n)| > n$. Thus if x is an element of c_0 lying outside ker(f), then (y_n) where $y_n = x - \frac{f(x)}{f(x_n)}x_n$, is a sequence in ker(f) and $||x - y_n|| = \frac{|f(x)|}{|f(x_n)|}||x_n|| < \frac{|f(x)|}{n} \to 0$ as $n \to \infty$, showing that ker(f) is dense in c_0 . Thus we just need to show that f is discontinuous. For each n, consider the sequence $x_n = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{n}, 0, 0, 0, \cdots)$, then clearly $x_n \to 0$, $||x_n|| = 1$ and $|f(x_n)| = n$ so that f is not continuous.

2. Let H be a complex Hilbert space and let $\Phi : H \to H$ be a linear onto map such that $||\Phi(x)|| = ||x||$ for all $x \in H$. Show that Φ preserves the inner product.

Solution: Using the polarisation identity we observe that

$$4 < \Phi(x), \Phi(y) >= \sum_{k=0}^{3} \|\Phi(x + i^{k}y)\|^{2}$$

which by the given condition equals $\sum_{k=0}^{3} ||x + i^k y||^2$ which by another application of the polarisation identity equals 4 < x, y > 1. Hence Φ preserves inner product. \Box

3. Let A be a commutative complex Banach algebra with identity e. Show that A is homomorphic and isometric to a subalgebra of the space of bounded linear operators on a Banach space.

Solution: Let B(A) denote the Banach algebra of bounded linear operators on A. Define $\lambda : A \to B(A)$ by $\lambda_a(b) = ab$ for $a, b \in A$ (the notation λ_a stands for $\lambda(a)$). Clearly λ is unital algebra homomorphism. Now, $\|\lambda_a(b)\| = \|ab\| \le \|a\| \|b\|$ so that $\|\lambda_a\| \le \|a\|$. Also we have

$$\|\lambda_a\| = \sup_{\|b\| \le 1} \|ab\| \ge \|a\|.$$

Thus $\|\lambda_a\| = \|a\|$ for all a in A and consequently, A is homomorphic and isometric to the subalgebra $\lambda(A)$ of B(A).

4. Let $M = \{f \in C([0,1]) : f(E) = 0\}$, for some closed set $E \subset [0,1]$. Show that the quotient algebra C([0,1])/M is homomorphic and isometric to C(E).

Solution: Consider the map from $C([0,1]) \to C(E)$ given by $f \to f|_E$ (restriction of f to E). Clearly this a unital *-homomorphism between C^* -algebras which, by virtue of the Tietze extension theorem, is surjective also. Kernel of this map is obviously M which is closed also so that the quotient C([0,1])/M is a C^* -algebra and the map $C([0,1])/M \to C(E)$ given by $f + M \to f|_E$ is unital *-isomorphism and thus is an isometry.

5. Consider the Hilbert space $\ell^2 = \{\{\alpha_n\}_{n\geq 1} : \sum |\alpha_n^2| < \infty\}$. Let $T : \ell^2 \to \ell^2$ be defined by $T(\{\alpha_n\}_{n\geq 1}) = \{\frac{1}{n}\alpha_n\}_{n\geq 1}$. Compute ||T||, also describe T^* .

Solution: We claim that $T^* = T$. To see this, given $\{\alpha_n\}, \{\beta_n\} \in \ell^2$, we note

$$\langle T\{\alpha_n\}, \{\beta_n\} \rangle = \sum_{n=1}^{\infty} \frac{\alpha_n}{n} \bar{\beta_n} = \langle \{\alpha_n\}, T\{\beta_n\} \rangle$$

Now, $||T\{\alpha_n\}|| \le ||\{\alpha_n\}||$ so that $||T|| \le 1$. Now the sequence e_1 (whose first element is 1 and all other elements are 0) clearly has norm 1 and $T(e_1) = e_1$ showing that ||T|| = 1.

6. Let A be a commutative Banach algebra with identity e. Show that every proper ideal is contained in a maximal ideal.

Solution: Let A be a commutative Banach algebra with identity e. Let I be a proper ideal in A. Let X be the collection of all proper ideals of A containg I partially ordered by inclusion. Note X is non-empty since I is in X. Let C be a chain in X. Let $I' = \bigcup_{I \in C} I$. One can easily see that I' is an ideal of A and that it is a proper ideal so that I' is an upper bound of C. Then by Zorn's Lemma X possesses a maximal element, as desired.

7. Let X be a normed linear space and Y a Banach space. Show that the space of bounded linear operators $\mathcal{L}(X, Y)$ is a Banach space.

Solution: See Rudin Functional Analysis Book, Chapter 4, Theorem 4.1.

8. Let $T: L^1([0,1]) \to L^2([0,1])$ be a bounded linear map. Consider $T^*: L^2([0,1]) \to L^{\infty}([0,1])$ defined by $T^*(f)(g) = \int T(g)\bar{f}dx$ for $f \in L^2([0,1])$ and $g \in L^1([0,1])$. Show that T^* is a well-defined, bounded linear map. **Solution:** Using the fact that $L^1([0,1])^* = L^{\infty}([0,1])$ we note that for any $g \in L^1([0,1]), f \in L^2([0,1]), T(g)\bar{f} \in L^1([0,1])$ and so, $\int T(g)\bar{f}dx$ is a complex number. It is clear that T^* is linear. Now for any $f \in L^2([0,1])$,

$$|T^*(f)(g)| = |\int T(g)\bar{f}dx| \le \int |T(g)\bar{f}|dx = ||T(g)\bar{f}||_1 \le ||T(g)||_2 ||f||_2 \le ||T|| ||g||_1 ||f||_2$$

so that T^* is bounded.

9. Let *H* be a complex Hilbert space. Show that for some infinite discrete set Γ , there is a bounded linear map from *H* onto $\ell^2(\Gamma)$.

Solution: Let $\{e_i : i \in I\}$ be an orthonormal set in H. We know from Bessel's inequality that for any x in H,

$$\sum_{i \in I} |\langle x, e_i \rangle|^2 \le ||x||^2 \tag{1}$$

Let us consider the Hilbert space $\ell^2(I)$ consisting of all complex functions f on I such that $\sum_i |f(i)|^2 < \infty$ with the inner product given by

$$< f,g > = \sum_i f(i) g\bar(i)$$

for f, g in $\ell^2(I)$. Define a mapping T from H to $\ell^2(I)$ given by $x \in H \to x'$ where $x'(i) = \langle x, e_i \rangle$. T is obviously linear. It follows from (1) that T is bounded also. Let P be the space of all finite linear combinations of the vectors e_i . Note also that T is an isometry of P onto the dense subspace of $\ell^2(I)$ consisting of those functions whose support is a finite subset of I. This implies that T is onto.

10. Let H be a complex Hilbert space and let $T : H \to H$ be a bounded linear map such that its adjoint $T^* = 0$. Show that T = 0.

Solution: Note that for any $x, y \in H, \langle Tx, y \rangle = \langle x, T^*y \rangle = 0$ which implies that T = 0.